Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing

نویسندگان

  • J. L. Endrino
  • A. Gutiérrez
  • R. Gago
  • D. Horwat
  • L. Soriano
  • G. Fox-Rabinovich
  • J. Guo
چکیده

Thermal treatment of supersaturated Ti1!xAlxN films (x " 0.67) with a dominant ternary cubic-phase were performed in the 700– 1000 !C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 !C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures (P900 !C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AlN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 !C, while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 !C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N2 is formed as a consequence of the phase transformation process. " 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High temperature behavior of arc evaporated ZrAlN and TiAlN thin films

Hard coatings can extend the life time of a tool substantially and enable higher cutting speeds which increase the productivity in the cutting application. The aim with this thesis is to extend the understanding on how the microstructure and mechanical properties are affected by high temperatures similar to what a cutting tool can reach during operation. Thin films of ZrAlN and TiAlN have been ...

متن کامل

Phase Stability and Elasticity of TiAlN

We review results of recent combined theoretical and experimental studies of Ti1-xAlxN, an archetypical alloy system material for hard-coating applications. Theoretical simulations of lattice parameters, mixing enthalpies, and elastic properties are presented. Calculated phase diagrams at ambient pressure, as well as at pressure of 10 GPa, show a wide miscibility gap and broad region of composi...

متن کامل

Formation of Poly(vinylidene fluoride) Nanofibers Part II: the elaboration of incompatibility in the electrospinning of its solutions

Poly(vinylidene fluoride) (PVDF) fibers with two molecular weights were prepared via electrospinning process. In this process, the concentration of spinning depended drastically on the gelation process. Also, it was experimentally smaller than obtained concentration in the solution entanglement number approach (SENA). Proof of this incompatibility was explained by the properties of PVDF a...

متن کامل

Formation of TiO2 Thin Films using NH3 as Catalyst by Metalorganic Chemical Vapor Deposition

We have studied metalorganic chemical vapor deposition of TiO2 thin films using titanium tetra-isopropoxide [TTIP, Ti(O–C3H7)4] and NH3 as a catalyst at deposition temperatures ranging from 250 to 365◦C. At deposition temperatures above 330◦C, pyrolytic self-decomposition of TTIP is dominant regardless of the use of NH3, and the activation energy for TiO2 film formation is 152 kJ/mol. At deposi...

متن کامل

Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy

In this study, we investigated phase separation and long-range atomic ordering phenomena in InGaN alloys produced by molecular beam epitaxy. Films grown at substrate temperatures of 700–750 °C with indium concentration higher than 35% showed phase separation, in good agreement with thermodynamic predictions for spinodal decomposition. Films grown at lower substrate temperatures ~650–675 °C! rev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011